
Comprehensive Integration Methods for Automatic Security in the Software 
Development Lifecycle 

Jingyu Yang, Enzhe Li, Yu Wang, Dongmei Zhai 
China TravelSky Holding Company Limited, Beijing, 101318, China 

1614124889@qq.com 

Keywords: Software development lifecycle, Automatic security, Comprehensive integration 
methods 

Abstract: In recent years, China’s science and technology sector has made significant achievements 
driven by the rapid progress of the social economy. Software development technology is advancing 
rapidly, which has to some extent increased the complexity of the software supply chain and the 
characteristics of global development. Based on this, how to improve the security of the software 
development lifecycle has become an urgent task. In the traditional sense, software development 
security management is mainly aimed at standardizing the later stages of software development 
work. However, with the diversification of information technology security risks and the continuous 
deepening of harm levels, it is clearly necessary to do a comprehensive integration of automatic 
security in the software development cycle. This article analyzes the comprehensive integration 
method of automatic security in the software development lifecycle, providing reference and 
guidance for relevant personnel to timely discover and address security vulnerabilities or defects in 
software. 

1. Introduction 
Faced with various security risks that frequently occur in the software development lifecycle, 

major software enterprises urgently need to solve the comprehensive integration of automatic 
security in the software development lifecycle. This can not only help software companies maintain 
a good market reputation and avoid a decrease in customer base, but also prevent data information 
leakage and various network attacks [1]. Based on this, relevant software development enterprises 
should fully recognize the necessity of integrating network security into the software development 
cycle, and then design comprehensive integration methods according to the principle of automated 
testing to maximize the quality and efficiency of software development and improve the stability of 
software applications. 

2. Necessity of Integrating Network Security into the Software Development Cycle 
The reasonable design and implementation of a comprehensive integration method for automatic 

security in the software development lifecycle can improve the security and stability of software 
development. Network security integration technology is a testing method that utilizes automated 
testing tools and scripts to simulate user behavior and check various programs or software functions. 
Compared to manual detection mode, network security integration testing technology has the 
following advantages. 

Firstly, improve testing efficiency. Network security integration testing technology can quickly 
and accurately execute testing instructions, greatly improve testing efficiency, run a large number of 
test cases in a short period of time and promptly identify potential security risks. Secondly, reduce 
testing costs [2]. Network security integration testing technology can reasonably reduce testing costs, 
shorten testing cycles, and accelerate software development efficiency. Thirdly, improve software 
quality. Network security integration testing technology can comprehensively detect software 
performance, improve software quality, reduce manual testing errors, and further improve software 

2024 10th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2024)

Copyright © (2024) Francis Academic Press, UK DOI: 10.25236/icmmct.2024.0011



stability and reliability. 
Applying network security integration testing technology well in the software development 

lifecycle can improve testing efficiency and quality, and maximize the maintenance of software 
development quality and operational stability. 

3. Principles for Implementing Automated Testing 
3.1 Determine Testing Objectives 

The software development team first needs to clarify the testing focus, such as key business 
processes, core functional points, etc., based on the type of software development, complexity, and 
level of existing technology research and development. 

3.2 Determine Testing Scenarios 
Further expand the coverage of testing scenarios and test cases based on the established testing 

objectives. The testing scenarios can be specifically divided into basic testing scenarios and 
complex testing scenarios. For example, conducting security testing on basic application scenarios 
of e-commerce websites can be manifested as login and registration, while security testing in 
complex scenarios can be manifested as shopping cart, order management, etc. [3]. 

3.3 Evaluate the Feasibility of Automated Testing 
The software development team needs to further test which test cases can be automated and 

which test cases need to be manually executed. 

3.4 Develop Automated Testing Plans 
Specifically manifested in the selection of testing tools and the development of testing 

frameworks. The software development team also needs to test the feasibility of script writing and 
execution, as well as detect data information and environmental conditions. 

3.5 Evaluate the Effectiveness of Automated Testing 
After the implementation of automated testing, the software development team should 

scientifically evaluate the testing effectiveness, coverage, etc., and then make reasonable 
adjustments and optimizations to the automatic security comprehensive integration method of the 
software development lifecycle based on testing [4]. 

It is worth noting in this process that the software development team should establish automation 
testing goals and scope based on the specific situation and limitations of the software development 
project, and track and adjust the progress of automation testing in real time to ensure the synergy 
between the effectiveness of automation testing and the collaborative progress of software 
development. 

4. Comprehensive Integration Methods for Automatic Security in the Software Development 
Lifecycle 

At present, due to the complexity of the software development lifecycle, major software 
development companies are developing various software development lifecycle methods, such as 
waterfall model, V-shaped model, big bang model, iterative model, incremental model, etc. [5]. 
However, currently, most software development enterprises still choose agile development 
integration methods as the first choice in the comprehensive integration process of automatic secure 
software development lifecycle. By dividing software development projects into small modules and 
delivering them in continuous cycles, we can flexibly control changes in requirements, thereby 
improving resource utilization, reducing security risks, and improving software development quality 
and operational stability. 

 

2



4.1 Requirements Analysis and Design 
The primary task of fully integrating automatic security into the software development lifecycle 

is to further clarify security requirements and design them reasonably based on actual situations. 
Before the formal start of a software development project, developers need to discuss security 
objectives and requirements with stakeholders such as product development managers, software 
security experts, etc. This should include security requirements such as authentication, access 
control, and data retrieval encryption for software applications. Then, software developers design 
security management frameworks, security risk response methods, etc. based on specific security 
requirements, to ensure that the application design phase in the software development lifecycle has 
a strong security foundation to the greatest extent [6]. 

4.2 Security Coding and Review 
Doing a good job in secure coding is also one of the comprehensive integration methods for 

automatic security in the software development lifecycle, which can ensure the scientific and secure 
nature of software development. Based on this, software development teams should strictly follow 
the principles of best practices in security management and write security standard code based on 
actual situations. For example, codes that circumvents common security vulnerabilities are 
specifically manifested as buffer overflow management code, SQL injection security code, 
cross-site school-based attack code, etc. In addition, to maximize the quality of secure code, 
software development teams should also make good use of static analysis tools to carry out 
automated code detection and work, and test code security. During this process, software developers 
should strengthen communication and cooperation with security experts to ensure that there are no 
potential vulnerabilities or risks in the security code. 

4.3 Automated Security Testing 
The current software development delivery time and R&D complexity continue to increase, and 

the manual security testing mode used by software enterprises in the past is no longer in use. Based 
on this, software development technology teams should fully utilize automated security testing 
technology and continuously improve the integrated security of the software development lifecycle. 
Automated security testing tools can simulate various network attack scenarios, such as technical 
vulnerabilities, security vulnerabilities in web applications, identity authentication login, and can 
also conduct security testing, ambiguity detection, and so on. The above tools can promptly identify 
various security issues that exist in the software development lifecycle, and provide security repair 
suggestions for software developers to ensure software development security. 

4.4 Continuous Integration and Delivery 
Continuous integration and delivery are key aspects of the agile development process in the 

software development lifecycle. In this regard, the software development team should integrate 
security into the continuous integration or continuous delivery process, and conduct security checks 
and testing at every stage of the software development lifecycle. For example, software 
development enterprises can apply static code analysis and security testing tools in the continuous 
integration process, to timely discover and fix security vulnerabilities. In addition, automated 
security testing technology can be applied in the continuous delivery process, and a refined security 
assessment can be conducted before the software is officially launched. 

4.5 Deployment and Configuration Management 
The software security development process involves automated deployment, secure 

communication, and rollback planning, which can help software development teams restore security 
risks to known states before they escalate. In the process of security configuration management, the 
software development team should design standardized configurations, conduct regular 
configuration audits, and timely update software control versions to improve the sensitivity of 
security storage and management. In addition, technicians can also achieve comprehensive 

3



automation and security integration by dynamically monitoring security vulnerabilities and 
repairing security patches in a timely manner. They can execute security patch management in 
temporary environments to improve software development security. 

4.6 Operations and Maintenance 
The final stage of the software development lifecycle is software maintenance, which involves 

fixing known security vulnerabilities or defects, adding new features appropriately, and managing 
software upgrades. In this regard, software development enterprises should establish a major 
security incident response plan, clarify the work responsibilities of team members, dynamically 
monitor the software development lifecycle and related basic equipment, and timely discover and 
repair security risks. In addition, the software development team should also backup and promptly 
recover data information during ransomware attacks, and regularly conduct security training for the 
development team, such as safety awareness promotion activities, safety skills training activities, 
safety seminars, etc., to comprehensively enhance the safety awareness and risk response ability of 
employees. 

5. Conclusion 
In summary, accurately designing comprehensive integration methods for automatic security in 

the software development lifecycle based on actual situations has strong practical significance. Not 
only can it improve testing efficiency and reduce testing costs in the software development lifecycle, 
but it can also accelerate software update speed, ensuring software development quality and 
operational stability to the maximum extent. Based on this, relevant software development 
enterprises should take measures such as requirement analysis and design, security coding and 
review, automated security testing, continuous integration and delivery, deployment and 
configuration management, operation and maintenance to maximize software development 
efficiency, continuously enhance software stability, and promote the healthy progress of China’s 
software development industry. 

References 
[1] Gu Kangkang, Zhang Li, Lv Youdong, et al. Exploration of the Current Situation and 
Application Practice of Computer Software Development Technology [J]. Software, vol.44, no.9, 
pp.104-106, 2023. 
[2] Jie Chunle. Exploration of the Current Situation and Application Practice of Computer Software 
Development Technology [J]. Network Security Technology and Application, no.7, pp.55-56, 2023. 
[3] Gan Jianwen. Research and Application of Cluster Ensemble Algorithm Based on Complex 
Relationship Mining [D]. Shanxi University, 2023. 
[4] Peng Xinyue. Research on Office Chair Design Evaluation Based on LDA and Optimized FAHP 
Integration Method [D]. Central South University of Forestry and Technology, 2023. 
[5] Li Guofan. Research and Inspiration on the Selection Method of Cloud Software Lifecycle 
Model [J]. Science and Technology Innovation and Productivity, no.3, pp.18-23, 2023. 
[6] Liu Mingwei, Xu Liguan, Zhang Lingzhi. Research on Quality Measurement Method for 
Integrated Software Development Based on Indicator Fusion [J]. Automation Technology and 
Application, vol.42, no.1, pp.97-99+103, 2023. 

4




